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Abstract. A renormalisation group approach to two-dimensional percolation problems on 
the honeycomb lattice (bond) and the KagomC lattice (site and bond) is developed using a 
scaling transformation in real space. A finite cluster approach, which we call the electrode 
method, gives the location of the fixed point p*, the eigenvalue A and the correlation length 
critical exponent v ;  the results are p *  = 0.6308, A = 1.669 and U = 1.353 for both the 
honeycomb lattice (bond) and the Kagome lattice (site), and p* =0.4697, A = 1.577 and 
U = 1.522 for the Kagome lattice (bond). The fixed point p* for the honeycomb lattice 
(bond) and the Kagome lattice (site) is in good agreement with the exact critical percolation 
probability obtained by Sykes and Essam. 

1. Introduction 

In previous papers we have presented a simple method, which we call the ‘electrode 
method’, of a renormalisation group approach in real space (Yuge and Murase 1978, 
Yuge 1978). In these papers we studied the site percolation problems on the square 
lattice (Yuge and Murase 1978) and on the triangular lattice (Yuge 1978), and also the 
bond percolation problem on the square lattice (Yuge 1978). In this paper we apply this 
electrode method to the percolation problems on the two-dimensional honeycomb 
lattice (bond) and KagomC lattice (bond and site), and calculate the critical percolation 
probability p c ,  eigenvalue A and the correlation length critical exponent Y. 

The basic method of this approach can be set up in terms of Kadanoff’s original 
picture, the block spin picture (Kadanoff 1966), using the scaling transformation in real 
space. The method of Kadanoff’s picture has been formulated recently and applied to 
the study of critical behaviour in percolating systems (Harris et a1 1975, Young and 
Stinchcombe 1975, Stinchcombe and Watson 1976). If the percolation probability p on 
an original lattice scales into a new percolation probability p ’  on a new lattice by the 
renormalisation transformation R, 

then the fixed point p*  is determined by the relation 

p *  = R ( p * ) .  (2) 
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The non-trivial fixed point also gives an approximation for the critical percolation 
probability p c .  The linearised form of the renormalisation transformation near the fixed 
point has the eigenvalues A ,  with A I  > 1 > A 2  . . . . The correlation length critical 
exponent Y is related to the maximum eigenvalue A by 

Y = In b/ln A 

where b is the change of scale of length. 

A 1 =dR(p)/dpIp=p* (3) 

2. Honeycomb lattice (bond) 

Our scaling procedure is defined by a renormalisation transformation on finite lattices 
sandwiched by two electrodes. An illustration of the basic scaling procedure on this 
lattice is provided in figures l(a)-(c). The cluster of bonds on the original honeycomb 
lattice (full line) enclosed by the broken line in figures l ( a )  and ( b )  scales into a new 
lattice (full line) in figure l (c )  with a scale factor b = 2. As shown in figure l (c) ,  the 
renormalised probability p ‘  of a bond on the new lattice is determined as the probability 
of the cluster being conductive when the cluster is sandwiched between two plane 
electrodes AB and CD made of perfect conductor. There are‘ three equivalent 
transformations as shown in figure l ( a )  and two transformations shown in figure l ( b ) .  

( a  I ( b l  (Cl 

Figure 1. Renormalisation transformation on  the honeycomb bond lattice. In ( 0 )  and ( b )  
the full line is an original lattice; the cluster of bonds enclosed by the broken line A B C P  is 
transformed into a new lattice ABCD shown in ( c )  with the scale factor b = 2. (c )  
Combination of paths for the new probability p ’ .  New bonds (full line) are sandwiched 
between two plane electrodes A B  and CD. 

The three transformations can be generated from each other by the spatial translation 
on the original lattice to a bond direction by a bond length. We denote the probability 
for the two electrodes being conductive by TI( p )  and T2( p ) (  = T3( p ) )  corresponding to 
the transformation in figure l(a) and to the two transformations in figure l(b),  
respectively. Then the total average probability T ( p )  for which two electrodes AB and 
CD become conductive can be given by the arithmetic average of the three prob- 
abilities: 

T ( p ) = i ( T , ( p ) +  TZ(P)+ T3(P)). (4) 
On the other hand, the probability for two electrodes being conductive on the new 
lattice is pf2. Then the renormalisation transformation by the electrode method can be 
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We can obtain the probabilities T(p) ( i  = 1, 2 , 3 )  from the paths which contribute to 
the conductance of the clusters according to exclusion-inclusion principle: 

T l ( p )  = 2p4+4p5  - 2 p 6  -4p' - 7 p 8  + 12p9-4p" 

T 2 ( P )  = T3(P) 

( 6 )  

(7) = 2p4 + 2 p 5  + p 6  -4p'-  2p8 + 4 p 9  - 7 p 1 ° +  2p" + 7 p 1 2  -4p13. 

From the renormalisation transformation (3, the fixed point p * ,  the maximum eigen- 
value A and the correlation length critical exponent v can be calculated and are given 
by 

p *  = 0.6308 A 1 = 1.669 v = 1.353. (8) 

3. Kagome lattice (site) 

In general, any bond problem can be transformed into an equivalent site problem on a 
different graph called the covering graph (Fisher and Essam 1961). Using this bond-to- 
site transformation we can show that the bond problems on the honeycomb lattice are 
transformed into the site problems on the KagomC lattice and, correspondingly, any 
renormalisation group transformation on the honeycomb lattice can be transformed 
into an equivalent renormalisation group transformation on the KagomC lattice. Using 
this property, we can find out the equivalent renormalisation transformations on the 
Kagomt lattice in this case of the electrode method. In figures 2 ( a ) - ( c )  we show the 
corresponding procedure for the renormalisation group transformation on the KagomC 
lattice. The cluster of sites (full circles) enclosed by the broken line in figures 2 ( a )  and 
( b )  is sandwiched between two plane electrodes AB and CD. The cluster of sites scales 
into a new KagomC lattice in figure 2 ( c ) .  The renormalisation transformation of the 
KagomC lattice can be defined by the same procedure mentioned in the case of the 
honeycomb lattice, i.e. by the probability for the two electrodes being conductive. 
Therefore the renormalisation transformation R ( p )  of the KagomC lattice becomes 

10) ibl I C  I 

Figure 2. Renormalisation transformation on the Kagome site lattice. In ( a )  and ( b )  the full 
line is an original lattice; the cluster of sites enclosed by the broken line ABDC is 
transformed into a new lattice ABDC shown in (c )  with the scale factor b = 2 .  (c)  
Combination of paths for the new probability p' are sandwiched between two plane 
electrodes AB and CD. 



1544 CMurase and Y Yuge 

exactly same as that of the honeycomb lattice, and is given by equations (5)-(7). Then 
the fixed point p * ,  the maximum eigenvalue A 1  and the correlation length critical 
exponent Y of the site problems on the KagomC lattice are also given by equation (8). 

4. Kagome lattice (bond) 

In this section we consider the bond problems on the KagomC lattice. An illustration of 
the basic scaling procedure on this lattice is provided in figures 3(a) and (b). The cluster 
of bonds, which is enclosed by the broken line in figure 3(a), on the original KagomC 
lattice (full line) scales into a new lattice (full line) in figure 3(b) with a scale factor b = 2. 

*% C D 

( 0 )  l b )  

Figure 3. Renormalisation transformation on the Kagome bond lattice. In ( a )  the full line is 
an original lattice; the cluster of bonds enclosed by the broken line ABDC is transformed 
into a new lattice shown in ( b )  with the scale factor b = 2. AB and CD are two plane 
electrodes. 

AB and CD in figures 3 ( a )  and ( b )  are two plane electrodes. If we denote the 
probability for two electrodes being conductive on the original lattice by Tk ( p ) ,  we can 
calculate this exactly: 

(9) T k ( p )  = 4p4 + 16p5 +6p6 - 4 0 ~ ’ -  54p8-74p9 + 89p10+. . . . 

All coefficients of each power p “  (n = 0, 1, . . . , 24 )  of Tk (p) are listed in table 1. On the 
other hand, if we denote the probability for two electrodes being conductive on the new 
lattice by T; ( p ’ ) ,  this becomes 

(10) TL ( p ’ )  = ( p ’  + p ’ 2  - P ’ ~ ) ~ .  

The scaled probability p ‘  is determined so that the two probabilities T k ( p )  and T ;  ( p ’ )  
become equal : 

T ;  ( p ’ )  = T/C(p). (11) 

This relation determines the renormalisation transformation R ( p )  of equation (1) on 
the Kagome lattice (bond). Usingrelations (2) and (3), we can calculate the fixed point, 
the maximum eigenvalue A and the correlation length critical exponent Y of the bond 
problems on the KagomC lattice. The results are given by 

p *  = 0.4697 A1 = 1.577 Y = 1.522. (12) 
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Table 1. Coefficients of p n  of the probability T k ( p )  on the Kagomk lattice (bond). 

n of p"  Coefficient n of p"  Coefficient 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

0 
0 
0 
0 
4 

16 
6 

-40 
-54 
-74 

89 
706 

-140 

13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 

-2276 
1006 
4012 

-3723 
-2808 

5658 
-1708 
-2373 

2654 
-1199 

270 
-25 

5. Discussion 

Our results of the fixed point p*=0.6308 for the honeycomb lattice (bond) and 
KagomC lattice (site) show excellent agreement with the exact critical percolation 
probability p c  = 0.6527 (Sykes and Essam 1964). The correlation length critical 
exponent v = 1.353 also shows close agreement with the value v = 1.34 f 0.02 obtained 
by series expansions for bond percolation on the triangular lattice ( D u m  et a1 1975). 
These results on the honeycomb lattice (bond) and the KagomC lattice (site) show that 
our renormalisation procedure by the electrode method (equations (4)-(7)) gives a very 
good renormalisation transformation in real space. Since our method is very simple, the 
electrode method can be applied to the study of other critical behaviour of percolation 
problems on these lattices. 

Our result p *  = 0.4697 for the KagomC lattice (bond) is in good agreement with the 
result 0.435 f 0.036 of the Monte Carlo experiment obtained by Dean (1963). The 
critical exponent v = 1.522 for the KagomC lattice (bond), however, is different from 
the estimated value Y = 1.35 k0 .02  from the scaling hypothesis (Gaunt and Sykes 
1976). This difference will be due to the scale of the renormalisation. For the case of 
the KagomC lattice (bond), the scaling factor is only b = 2. If we can calculate the cases 
for b = 3,4 ,  . . . , the correlation length critical exponent will become smaller as in the 
case of other lattices, for example the square lattice (site) and the triangular lattice (site) 
(Yuge and Murase 1978, Yuge 1978). Unfortunately even the case with b = 3 on the 
KagomC lattice (bond) includes a large number of bonds (54) and it is difficult to 
calculate the probability T k ( p )  of this lattice exactly. 

Our renormalisation procedure (electrode method) in real space has one charac- 
teristic feature: its symmetry. Our renormalisation procedures are chosen so that the 
new renormalised lattice maintains the symmetry of the original lattice. For example, 
the arithmetic average of three probabilities (equation (4)) corresponding to three 
renormalisation procedures guarantees the symmetry on the new lattice. We think this 
symmetry-conserving property of our electrode method gives good results for three 
percolating systems; we also think this property is a very important condition in the 
study of critical properties of percolating systems using the renormalisation procedure 
in real space. 
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